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Abstract— Injuries, frailty, and physical disabilities cause
people to have trouble performing Activities of Daily Living
(ADLs), including fetching food for themselves. A growing
population of senior citizens in elderly care facilities and a
shortage of staff pose logistical issues for frequent and timely
deliveries of small objects customized to individual needs.
Mobile manipulator platforms, such as the Hello Robot Stretch
RE1, offer a solution for customized and autonomous robotic
assistance. In this work, we present a system for point-to-
point deliveries of food baskets using the Stretch RE1 Mobile
Manipulator for patients in hospitals and nursing homes. We
discuss the design decisions informed by technical challenges
and stakeholder interactions and evaluate the feasibility and
future work required for real-world deployments of sleek
mobile manipulators through experimental evaluations. The
code for our system is available on GitHub1.

I. INTRODUCTION

The US Department of Health and Human Services pub-
lished a report2 in January 2023 revealing that more than
1.4 million individuals reside in over 15,500 medicare and
medicaid-certified nursing homes across the country. The
COVID-19 pandemic has further exacerbated the staffing
shortages in these nursing homes. According to a survey3

conducted by the American Health Care Association and
National Center for Assisted Living, 94% of nursing home
providers faced staffing shortages during the summer of
2021, while 81% of assisted living communities experi-
enced similar shortages. Certified nursing assistants, direct
caregivers, and dietary staff were among the hardest-hit
professions. The workforce situation has only worsened since
2020, with nearly 75% of nursing homes and almost 60% of
assisted living communities reporting a decline in staff.

In the United States, mobility difficulties are the most
prevalent disability among older adults (ages 65+), affecting
over 15% of older adults (ages 65–74), 26% of those
ages 75–85, and 48% of those aged 85 and above [1],
[2], who often require care in assisted-living facilities. The
Aging Concerns, Challenges, and Everyday Solution Strate-
gies (ACCESS) [3] study has shown that individuals with
prolonged mobility disabilities seek solutions that provide
them autonomy with activities of daily living (ADLs) and
without causing inconvenience to others.

To address these challenges, automated solutions in the
form of service robots that can assist with ADLs are needed.

1https://github.com/prasoonvarshney/stretch-robot
2US Department of Health and Human Services Report on Nursing

Homes
3AHCA/NCAL Survey on Staffing Shortages Across Nursing Homes

Mobile manipulators, such as the Stretch Robot [4], offer
a sleek design and a versatile array of sensors that enables
audio-visual perception, allowing them to assist ADLs based
on voice commands and complex tasks such as object
detection, navigation, collision avoidance, and patient pose
estimation. Moreover, the Stretch Robot provides a library
of navigation, localization, and arm movement primitives
through the open-source Robot Operating System (ROS) [5].

In this work, we focus on the application of point-to-
point food basket deliveries, with a target population of
senior citizens and those with disabilities living in nursing
homes and elderly care facilities. We make the following
contributions:

1) We describe a system design for utilizing the Stretch
RE1 mobile manipulator and ROS to perform point-to-
point food basket deliveries.

2) We outline the challenges and decision factors for real-
world deployments in hospitals and nursing facilities
based on interactions with stakeholders in the healthcare
system.

3) Limitations and future work required to ensure the
safety and effectiveness of such a system for use in
nursing facilities are identified.

II. RELATED WORK

A. Assistive Robots for Elderly Care

In recent years, there has been a growing trend of using
robots in healthcare to carry out tasks such as patient care,
cleaning, and logistics [6]. With the healthcare sector facing a
shortage of workers, service robots have emerged as a poten-
tial solution to help address this issue, while also improving
patient outcomes, reducing costs, and increasing efficiency.
In the field of healthcare robotics, there are various types
of service robots available, including autonomous mobile
robots, telepresence robots, and robotic exoskeletons. These
robots have been employed for various purposes, such as
sterilization, cleaning, COVID-19 testing, logistics, social
care, and telehealth. For this project, we specifically focus on
using service robots to assist with the logistics of delivering
meals in healthcare facilities.

Various studies have utilized the Stretch RE robot [4] to
explore the potential of assistive robots in helping humans
with everyday activities, including dressing [7], [8], adjusting
bedding [9], [10], and drinking [11]. A recent study claims
the limitations of traditional design methods in the context of

https://github.com/prasoonvarshney/stretch-robot
https://oig.hhs.gov/reports-and-publications/featured-topics/nursing-homes/
https://oig.hhs.gov/reports-and-publications/featured-topics/nursing-homes/
https://www.ahcancal.org/News-and-Communications/Press-Releases/Pages/Survey-94-Percent-of-Nursing-Homes-Face-Staffing-Shortages.aspx


Fig. 1. Industry Solutions: Left-to-Right: (1) Aethon TUG, (2) Moxi, (3)
Relay, (4) Stretch RE1

designing robotic interactions with older adults and suggests
a collaborative design process with older adults in their own
living environments [12].

B. Industry Solutions

Assistive robots have been productized and used in the
industry to assist logistics in healthcare settings. One ex-
ample is the Aethon TUG4, which is designed to deliver
medications and laundry in hospitals. While it can navigate
different floors autonomously, its bulky size (22.4 x 33.8
x 47.7 inches) often makes it challenging to move through
crowded corridors, requiring healthcare workers to manually
restart it. Similar robots, such as Moxi5 or Relay6, are also
relatively large or lack an end effector that enables flexible
interaction with objects.

The Stretch RE1 offers a complementary solution with
a leaner size (13.1 x 13.4 x 56.0 inches), making it eas-
ier to navigate through obstacles in crowded areas. This
makes Stretch ideal for point-to-point custom deliveries of
lightweight objects like water bottles, food items, and bags,
whereas, the larger robots are better for bulk deliveries like
laundry. In addition to its smaller size, the Stretch RE1
offers a built-in microphone and speaker, enabling flexible
interaction with humans through voice commands. As op-
posed to the pre-programmed behavior and control through
centralized fleet management software seen in products like
the TUG, features of Stretch provide greater customization
of robot operations.

Another dimension that makes Stretch an attractive option
for widespread adoption in nursing homes is its relatively
low cost of $19,950, compared to over $100,000 for various
versions of Aethon TUG, and the expensive monthly sub-
scription model for Moxi and Relay, which makes the latter
robots affordable only to large hospital chains.

III. METHODOLOGY

In this section, we describe the process we followed
to build our basket delivery system. We first look at the
various design decisions informed by stakeholder challenges,
technical challenges, and feasibility. Then, we dive into the

4https://aethon.com/brochures/
5https://www.diligentrobots.com/moxi
6https://www.relayrobotics.com/

Fig. 2. Candidate Basket Options

details of the implemented navigation and object manipu-
lation stacks. Lastly, discuss the limitations and ways to
improve the current system.

A. Design Decisions

1) Stakeholder Interactions: We contacted two stake-
holders working in the healthcare industry for feedback on
the project direction. One is a nurse at the University of
Pittsburgh Medical Center (UPMC), and the other is a doctor
at BrightSpring Health Services.

Both stakeholders confirmed that a sleek mobile robot
would be useful for navigation in small spaces. One stake-
holder reported using Aethon’s TUG for laundry and medica-
tion delivery in their workplace but noted the inconvenience
of manual restarts when the robot gets stuck in cluttered
corridors. Our proposed solution, based on the Stretch, would
face these issues less frequently due to its smaller size. We
also validated that the point-to-point delivery is adequate for
hospitals as it accommodates the different meal needs of
patients. Both stakeholders also agreed that a voice control
interface would be useful. Additionally, one stakeholder
commented that the robot should ideally be able to adapt
to changes in the patient’s position upon delivery.

Overall, based on the feedback received from these stake-
holders, we believe that a compact, mobile robot with a voice
control interface and the ability to adapt to changes in patient
position would be an ideal solution for hospital logistics.
While we focus on the delivery component in this project,
we hope to see these aspects integrated into future robot
designs to enhance their usefulness in healthcare settings.

2) Choice of Basket: Figure 2 illustrates the different
basket options we considered for our project, where the
leftmost basket was chosen as the final basket for the robot.
Initially, we considered a flatter food tray, commonly utilized
in cafeterias. However, we found that the flat container
was incompatible with the existing end effector, as Stretch
features only a single end effector. Attempting to hold a
plate-like object with a single hand resulted in an unstable
position, causing the content to shift even with meticulous
human teleoperation.

As a substitute, we opted for a basket-shaped container
with a handle on the top that can be easily grasped by
Stretch’s end effector. This shape provides stability to the
container during pick up and transportation, even when using
one hand, as the handle is located at the center of mass. In
addition, the depth of the first basket we utilized provides

https://aethon.com/brochures/
https://www.diligentrobots.com/moxi
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Fig. 3. A map of the JPMorgan Chase AI Maker Space at the Tepper building at Carnegie Mellon University

a degree of privacy for the items it contains. Furthermore,
the basket’s fabric material ensures a safer interaction with
humans compared to the second plastic container, which has
relatively sharper edges.

3) ArUco Tag Detection: For an intelligent system to be
effective, it must be capable of detecting the object of interest
and moving its joints to accessible locations without relying
on pre-programmed coordinates. In this study, we aimed to
improve the localization and grasping components of our
robot’s basket delivery system by comparing two detection
methods – object detection and ArUco marker detection.

As the Stretch ROS system comes equipped with a learned
perception stack, we initially tested the YOLO v3 object
detection network on our basket. However, as our basket
is not a typical prototype of a basket, the detection model
struggled to identify it correctly, often misclassifying it as
other objects, such as “cake.”

As a result, we opted to leverage ArUco markers by
attaching the markers to the basket. While fine-tuning the
object detection network would have been an alternative
option, we chose ArUco markers as they allow for rapid
detection from a particular viewpoint and offer superior
robustness in terms of location estimation when compared
to object detection models.

4) Assumptions: The assumptions made throughout the
project are as follows:

1) The basket possesses a handle on its top to enable easy
grasping.

2) The map of the room is mapped out in advance, for the
robot’s navigation stack to load.

3) A human is available to help the robot with its initial
localization.

4) The coordinates of the patient bed are known and fixed.
5) While the coordinates of the basket remain unknown, it

is likely that the basket resides in the kitchen area.
6) An Aruco tag is affixed to the basket.

B. Navigation Stack

1) Mapping: We use the ROS navigation stack and the
Lidar sensor to map out the entire room of the robot’s
operation in advance. Figure 3 shows an image of a built
map of the AI Maker Space at Carnegie Mellon.

2) ArUco Tag Detection: For detecting ArUco tags, we
utilized the following ROS launch files, which are provided
as part of the stretch core API: (1) stretch driver,
(2) d435i low resolution, (3) stretch aruco.
These files enable the detect aruco markers node, which
publishes translation and rotation coordinates of the detected
tag with respect to the map and odometry frames onto the
tf ROS topic.

We generate a 6 × 6 ArUco marker with ID 0 using an
online tool.7 Figure 4 shows an example of an ArUco tag.
The marker was then printed in a 10 × 10 (cm) size and
tagged onto the basket. It is worth noting that the dimensions
of the marker before and after printing may differ. Therefore,
we carefully measured the printed ArUco tags and entered
their lengths into the stretch marker dict.yaml con-
figuration file. This step is crucial in enabling the robot to
estimate the depth of the basket accurately based on the
known absolute size and the relative size observed in the
RGB sensory input.

The following two steps are repeated until the target
ArUco tag is found:

• Lookaround: The realsense camera is rotated 360 de-
grees in 45-degree increments.

• Known Priors: The baskets are expected to be near the
kitchen area depicted in Figure 3. A navigation goal
to predefined coordinates is sent to continue the search
process.

The searching loop ends as soon as an ArUco tag is
detected, or if the max retries count is reached.

7https://chev.me/arucogen/

https://chev.me/arucogen/


3) Reaching to ArUco: Once the ArUco tag has been
detected, the ROS navigation stack is used to query the
coordinates (x, y, z) and the orientation quaternion q of the
target object relative to the map frame.

While the queried coordinates and orientations are in the
3D space, they are first projected down to the z = 0 plane
for computing point navigation goals, since the robot base
is on the ground. The projection follows involves computing
euler angles along X , Y , and Z axes from the orientation
quaternion, and retaining only the angle along the Z axis, θ.

1) The euler angle ϕ along the Z-axis for the surface
normal projecting out of the ArUco tag is given by:

ϕ = θ + 3 ∗ π/2

and, the the euler angle γ along the Z-axis for the
desired base link direction is given by:

γ = ϕ− π/2 = θ + π

Note that the angles ϕ and γ are shifted into the range
[−π, π] using a simple modulo operation.

2) The X−Y offset in the direction of the surface normal
projecting out of the ArUco tag is then given by the
tuple:

(R ∗ cos(ϕ), R ∗ sin(ϕ))

The wrist alignment offset opposite to desired base
direction, to address the relative gap r between the
center of the Dex Wrist and robot arm lift is given by:

(−r ∗ cos(γ),−r ∗ sin(γ))

3) The final X − Y 2D goal coordinates to specify the
PointNav goal for the robot are then computed as:

x′ = x+R ∗ cos(ϕ)− r ∗ cos(γ)

y′ = y +R ∗ sin(ϕ)− r ∗ sin(γ)

where R is kept constant at 40cm informed by the
wrist extension for manipulation actions, and r
is measured to be 8cm.

4) The arm joint lift l is informed by the height of the
basket based on the queried z co-ordinate of the basket
and an offset c = 5cm measured as the height difference
between the ArUco tag and the handle of the basket.

l = z + c

C. Manipulation Stack

The manipulation actions used are based on a sequence
of hard-coded joint trajectory goals for the arm, wrist, and
gripper. Once the Stretch robot reaches nearby the basket
in the correct orientation, it performs the PICK action,
navigates to the hard-coded coordinates for the patient bed,
and performs the PLACE action.

In our current implementation, the PICK action executes
the following sequence of low-level actions:

1) Lift the arm to the right height (based on the computed
joint lift l in Section III-B.3)

Fig. 4. Sample ArUco Marker generated using an online tool

Fig. 5. Stretch robot in its initial position for the 8 end-to-end experiments

2) Move the wrist slightly up (to decrease chances of
collisions while extending the arm) and open the gripper

3) Extend the arm based on the constant R in section III-
B.3

4) Move the wrist down across the basket handle and close
the gripper

5) Retract the arm, lift it to maximum height, and fold the
wrist

The PLACE action performs the following sequence of
low-level actions:

1) Extend the wrist and lower the arm based on hardcoded
patient bed or couch measurements

2) Move the wrist down until contact and open the gripper
3) Lift the arm to max height
4) Retract the arm and fold the wrist

D. Limitations and Future Work

Navigation: Our approach utilizes a static map of the
environment, which means that the robot cannot avoid ob-
stacles autonomously or adaptively re-plan its route based
on the most recent sensory information. This would pose a
significant challenge when deploying the robot in real-world
settings where dynamic objects (e.g., carts) or humans are
present, and there is a need for robots to navigate around
them.



Step Success Rate (%)

Basket Detected 100

Navigation to Basket 87.5

Pick up Basket 87.5

Navigation to Patient Bed 75

Place Basket 62.5

TABLE I
OVERALL SUCCESS RATE FOR END-TO-END BASKET DELIVERY ACROSS

EIGHT TRIALS.

Manipulation: Our pre-programmed PICK and PLACE
actions are effective for baskets with a standardized form-
factor. However, failure cases may occasionally occur due
to the margin of error in orientation and position of the
navigation goals, which can deviate by a few degrees and
centimeters, respectively. The mean and standard deviations
of these errors are presented in Table III based on the results
of our experiments. Currently, the robot is unable to detect
when it fails to grasp an object. Consequently, it proceeds
with subsequent plans, navigating to the goal location even
when its gripper is empty. Incorporating a method that
enables the robot to recognize its failures through sensory
information, such as a camera image of its gripper or the
torque sent to the gripper/arm’s motor, and retry based on
that information would create a more autonomous agent that
humans could reliably use.

Localization: Another limitation lies in the initial pose
estimation step. The Stretch robot has two options for
determining its pose: an explicit estimate at the start of each
run or self-estimation by moving around. However, we found
that the latter option was not viable due to battery issues with
our specific robot. In our experiments, we provided initial
pose estimates manually in Rviz Graphical User Interface at
the start of each run or started the robot at the same origin
location in the room for each run. However, both options
hinder easy deployment in real-world settings. We believe
that future iterations of the Stretch robot require improved
hardware sensors and software capabilities for localization
to overcome this limitation.

IV. EXPERIMENTAL EVALUATIONS

A. End-to-End Delivery with Aruco Tag Detection

We performed eight end-to-end trials with the current
system design. Figure 5 shows the Stretch Robot we used
in its initial configuration after performing manual pose
estimation.

1) Success Rates: Table II presents the end-to-end success
rates of the high-level tasks executed by our system. A
failure in any of the steps implies the subsequent steps are
also considered unsuccessful. While the basket is detected
successfully at all trials, errors in pose estimation often
cause the navigation and manipulation to fail. It is also
noteworthy that the placing task, despite being hardcoded,
failed once due to the basket handle getting entangled in the

Step Duration (sec)

Nav to Basket 20.99

Navigation to Basket 44.02

Pick up Basket 51.71

Navigation to Patient Bed 35.11

Place Basket 53.32

Total 205.15

TABLE II
AVERAGE TIME TAKEN AT EACH STEP FOR END-TO-END BASKET

DELIVERY ACROSS EIGHT TRIALS.

Step Translation Error (m) Orientation Error (deg)

Navigation to Basket 0.07 (std=0.01) 3.5 (std=1.01)

Navigation to Patient Bed 0.06 (std=0.02) 1.62 (std=1.34)

TABLE III
OVERALL SUCCESS RATE FOR END-TO-END BASKET DELIVERY ACROSS

EIGHT TRIALS.

open gripper, causing the robot to pick the object up again.
This issue can be addressed by implementing a weight sensor
on the Dex Wrist and incorporating recovery behaviors.

2) Duration: Furthermore, we conducted a time analysis
to measure the duration of each step involved in completing
the task. Our results show that the most time-consuming steps
for the robot are picking up the basket and placing the basket
in the patient’s bed area. This is due to the current approach
of sending joint trajectory goals sequentially, with each joint
being moved one at a time (e.g., extending the arm, lowering
the arm, opening the gripper). This design was chosen to
enhance safety during the transfer of objects to the patient.
Moving one joint at a time provides a more predictable
movement from the perspective of the human user, as rapidly
extending and lowering the arm could potentially result in
a collision with the patient. We believe that this trade-off
between speed and safety can be improved in future iterations
of the robot.

3) Failure Cases: Outside of the eight trials, we observed
several instances of failures in picking up the basket that

Fig. 6. Arm incorrectly extended to the right of the basket as the wrist
drops down in an attempt to pick it up



led us to adjust the distance r between the end-effector and
the wrist, as mentioned in Section III-B.3. An example of
this error is illustrated in Figure 6, where the wrist deviated
slightly downwards to the right side of the basket.

4) Navigation Errors: Throughout the eight end-to-end
trials, navigation demonstrated an average translation error
of 6-7 centimeters and an average orientation error of 2-
4 degrees, as presented in Table III. Notably, despite these
marginal errors, the pick action achieved a 100% success
rate when the robot was able to navigate to the basket
successfully. An interesting observation was that the robot
was able to hold the basket from the side instead of the
handle during one trial. The basket’s sturdy but deformable
structure played a role in contributing to the overall success
rate of the PICK action.

V. CONCLUSION

This study presents a system design utilizing a Stretch
Robot for point-to-point deliveries of small daily objects
carried by a basket. The Stretch robot possesses a sleek
form-factor and the advantage of navigating through cluttered
hallways and small spaces, whereas the size of currently
deployed robots often restricts their ability to navigate ef-
fectively. The Stretch robot’s arm enables point-to-point
deliveries, and our experiments achieved a composite suc-
cess rate of 62.5% across eight trials. While the current
system’s overall success rate for end-to-end deliveries might
not be sufficient for deployment, we identify key potential
improvements, including utilizing sensors on the end-effector
for more precise grasping and placing of objects.
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