Investigating Dense Transformation vs Flow for
Tool Manipulation

Abstract—Dynamic manipulation of tools is present for many
robotic tasks, such as pouring water from one cup to another. We
examine the importance of action representations in performing
such tasks. We build upon prior work ToolFlowNet, but instead
of predicting per-point flows, we propose to predict dense
transformations. The main contribution of our work is a point
cloud-based architecture for imitating dense 6D actions for tool
use that can perform just as well as the flow-based baseline.
We show for transformation-based methods that using dense
predictions and random sampling in combination achieves the
best success rate and quality over single transformation and fixed
point methods.

Index Terms—manipulation, tool use, point clouds, action
representations

I. INTRODUCTION

Manipulation for tool use requires reasoning about the
geometry of the tool and how it interacts with its environment.
In a water pouring task, a robot must take into account how
different parts of the cup interact with the contained water
to successfully pour the water while minimizing spillage.
Some common modalities for observations for policy learning
include RGB images [1]-[3] and robot ground truth joint
angle [4], [5], however policy learning from point clouds has
been less explored. Methods specifically using point clouds
tend to focus on segmentation or classification [6], [7] instead
of policies, perhaps due to the difficulty of reasoning about
3D point clouds. However, point clouds are a promising ob-
servation modality: point clouds offer depth information unlike
2D RGB images, and it is easier to transfer from simulation
to the real world. Moreover, they are easily obtainable for
most objects in the scene with depth cameras unlike ground
truth poses. In this paper, we aim to explore different action
representations based on the point cloud observations and
examine how to utilize the point cloud structure to better learn
the policy.

Prior work in ToolFlowNet [8] demonstrated the efficacy
of dense flow action predictions on deformable manipulation
tasks. However, these flow predictions only describe the po-
sitional motion of the tool, and not its rotation in space. To
build upon this prior work, our project uses a similar point
cloud backbone, but explores 6D transformation-based action
representations, which include both positional and rotational

information, and show that a transformation-based action
space can perform just as well as a flow-based action space.
We ablate against a few variations of transformation-based
action spaces, with dense vs single predictions and random
point vs fixed point point selection.

Our main contributions are:

« We propose a novel point cloud architecture for behavior
cloning that predicts tool transformations along a trajec-
tory as 6D vectors.

o We compare our method against ablations and baselines
to show that dense predictions with random sampling
performs the best on a water pouring task, possibly due
to the dense supervision this provides during training.

II. RELATED WORK
A. 6D transformations for policy learning:

Prior work has used 6D transformations as action spaces
in robot manipulation, whether it be framed as a reinforce-
ment learning problem [5] or a grasp success classifica-
tion problem [7]. However, there has been little comparison
between transformation-based action spaces and flow-based
action spaces. In addition, prior work mostly explores the
manipulation of rigid objects. Also, such methods often predict
a single transformation and lack dense supervision. The single
transformation from prior work is usually the robot gripper
transformation, thus highly dependent on where the robot
grasps the object or the tool. Therefore, in a more general
way, the policy should learn an object-centric transformation,
which can extend to more diverse settings where the relative
position between the gripper and the object can change. In
this work, we explore this object-centric action representation
and directly compare two design choices for action spaces for
deformable object manipulation and show that both can be
optimized for a model to predict 6 DOF robot actions well.

B. Deformable object manipulation:

We focus on the application of deformable object manipula-
tion. One common difficulty with deformable object manipula-
tion is state representation for non-rigid objects. Some methods
simplify the state [9] or specifically learn the environment
dynamics [10]-[12] to learn policies that can handle the
complexities of deformable objects like sand [13], rope [9], or
cloth [14]. In contrast, in this work and in ToolFlowNet [8], we

propose a general method that does not require the modeling
of the dynamics of deformables.

I11.

We are interested in the task of policy learning using
segmented point cloud observations. At a given timestep ¢,
a segmented point cloud P; has N points, each with a feature
dimension of d. The feature includes its 3D coordinate position
(x,y,2z) € R3 and a one-hot vector that indicates the object
class to which it belongs to.

Our focus is on studying Behavioral Cloning (BC) using
segmented point clouds. BC assumes access to a dataset
D = (o1,a;)M,, where o;,a} is the observation and opti-
mal action from a demonstrator at timestep t respectively.
The observation o; we used in this project is point cloud
observation P;. BC employs supervised learning to train a
policy 7w with parameters 6, aiming to make the predicted
action a; = m(o¢) closely match the ground truth label af.
While BC may exhibit some error accumulation during testing,
it has demonstrated remarkable effectiveness in comparison
to more intricate learning-based algorithms in certain robotic
manipulation scenarios. This success has prompted further in-
vestigation into its applicability with point cloud observations.
For simplicity, we will omit the timetstep ¢ subscript in the
following part of the paper.

In the following section III-A and section III-B, we are
going to explain two action representations for the Behavior
Cloning policy, namely Flow-based action and transformation-
based action.

METHOD

A. Flow as Action Representation

The flow as action representation is adopted from this paper
ToolFlowNet [8] where we use a flow f(?) € R3 associated
with point p(*) as a 3D vector. For each point on the tool
we want to manipulate, the flow vector represents how the
point will move in the 3D space as a result of applying the
action. In details, we adopt a commonly used architecture
for point cloud (segmentation PointNet++) to extract per-point
feature from the tool. This backbone would take the 3d world
position and a one-hot encoding of the class of each point in
the point cloud, where P; has the shape of (N,d;) as input
and output per point feature IF in shape (V,ds). The resulted
3D flow vectors F = {f(W} N is fed through a differentiable,
parameter-less Singular Value Decomposition (SVD) layer to
get the rotation R; of the tool /todocite here. The translation
t; is computed as the difference between Py + Fy and R, Px.
The final transformation of the tool is (R, t:).

B. Transformation as Action Representation

Similar to flow-based action, transformation-based action
also uses a segmentation PointNet++ based backbone to ex-
tract the per-point feature first from point cloud observation
P, and then it is mapped through a network to output the per-
point transformation T} = (Ry,t;) € RV*6, There are several
variants of the transformation-based action representations
which differ in how the final action a; is generated from this
dense transformation 73.

1) SFP-Single: Single Fixed Point Transformation as
Action Representation: The first variant creates a fake center
point and replace the first point py of the point cloud obser-
vation with the fake center point. In our pouring water task,
the fake point is the bottom center of the g)ouring box. The
transformation of the tool is estimated as T , the first element
of T;. The ground truth action is T} () The behavior cloning
loss is shown as below:

L(T;, T7) = |11 = 17| (1)

2) RP-Dense: Random Point Transformation from Dense
Transformation as Action Representation: Unlike the first
variant which only uses a single point transformation to
provide supervising signal for the training, we use dense
transformation to provide guidance for the policy. The training
loss is:

2

N
L(T, 1) = YT - 17

=0

Through training, each point should learn a transformation of
the tool with regard to the coordinate frame that is centered
around the point. During test time, a random point index ¢
is selected among all possible N points to use as the coordi-
nate frame center p; and the corresponding transformation is
retrieved as T(2

3) SFP-Dense: Single Fixed Point Transformation from
Dense Transformation as Action Representation: The train-
ing loss is the same as Equation 2 but we propose a different
selection of the point during evaluation. Instead of selecting a
random point, this method always choose the first point p(©)
as the coordinate frame center and select the corresponding
transformation Tt(o) from the dense transformation predicted
by the network.

4) LWP-Dense: Largest Weight Point Transformation
Jrom Dense Transformation as Action Representation:
In order to automatically select the most appropriate point
as the coordinate frame center and apply the corresponding
transformation to the tool, we modify the output of our
network to not only generate a per-point transformation Tt(’)
but also a per point weight wt(l). The training loss is a weighted
sum of the per-point loss.

Tt, T7)

Zw 17 — 17|

During evaluation, we would select the point that has the
largest weight as the coordinate frame center to apply the tool
transformation. The estimated action a; is as follow:

3)

T(arg max; w®)

) ' “4)

&t:

The detailed structure of the framework for section III-B2
and section III-B3 is shown in the figure 1

Point Position Point Class ~ Tool Point Transformation ~ weight
[
Input .
Features Transformations T Manioulati
— Tool Transformations anipulation
R Segmentation] — Tool Transformation
—» | PointNet++ | —_— :'_. - AoA »
Backbone : TZ B (RZ, tz)
—
L}
Segmented — =
Point Cloud P I:I:I —

Fig. 1.

Method Overview for Random Point Transformation from Dense Transformation as Action Representation

and Single Fixed Point Transformation from Dense Transformation as Action Representation.

Point Position Point Class ~ Tool Point Transformation weight
1 [|
Input .
F egﬁ;lr es Transformations T lati
[—m Tool Transformations Manipulation
]
i I Segmentation e m Tool Transformation
[— :I!. N N
! . . — >
! Backbone : E == (RZ, tl>
i : Cm
Segmented Cm
Point Cloud P :: :] - Tool weights
Weights w

Fig. 2. Method Overview for Largest Weight Point Transformation from Dense Transformation as Action Representation.

IV. EXPERIMENTS AND RESULTS

We evaluate our method in the simulated SoftGym [15]
PourWater task shown in Figure 3, where an agent is tasked
with pouring water from one box into a target box. The task is
considered as a success if at least 75% of the water particles
end in the target box. We used 100 demonstrations for training
the behavior cloning policy for all the methods and N = 2000
points for point cloud observation. After the network generates
the transformation, the simulation applies the corresponding
transformation to the pouring box. All the methods are trained
for 500 epochs and we use the checkpoint at the last epoch
for evaluation. During evaluation, there are 25 fixed held-
out starting configurations. The success rate averaged over 25
configurations for all the methods are shown in Figure 4.

_—
|

Fig. 3. The PourWater task in SoftGym [15].

The methods we are testing are listed in III-A and III-B.
We used their abbreviation for simplicity. We also listed
some related metrics, including the training loss, testing loss,
percentage (percentage of particles poured into the target box)
and success rate, in the table 1.

From the result, we can see that RP-Dense achieved best
performance both in success rate and pouring percentage
among all the methods. ToolFlowNet also demonstrated com-
parable performance as RP-Dense. Therefore, both dense
transformation and flow have great potential in learning such
tool transformation policy. We also noticed that SFP-Dense
significantly outperforms SFP-Single because SFP-Single only
receives supervised signal from one point transformation so it
may lose track of the whole point cloud structure and it fails
to generalize to different variations of the box sizes we intro-
duced in the demonstrations. In contrast, SFP-Single receives
all the points’ supervised signals and those supervised transfor-
mations are related to the distances between points. Therefore,
these transformations can help the network quickly capture the
structure of the point cloud, accelerating the policy learning
for tool transformation. Another difference we can find from
the table is that RP-Dense outpeforms SFP-Dense. This may
suggest that through training with dense transformation, not
necessarily the fixed center point learns a best transformation
all the time. Encouraging the randomness of the choice of the
transformation coordinate frame center may bring additional
benefit for learning an accurate transformation. This is also

[3]

Method Metrics
Training Loss | Testing Loss | Success Rate | Percentage
ToolFlowNet 0.0018 0.0046 0.6 0.72
SFP-Single 0.0081 0.0146 0.2 0.42
RP-Dense 0.0073 0.0136 0.68 0.77
SFP-Dense 0.0074 0.0140 0.4 0.53
LWP-Dense 0.0045 0.0356 0 0.08
TABLE I

THE TRAINING LOSS, TESTING LOSS, SUCCESS RATE, AND PERCENTAGE
OF WATER IN THE TARGET CUP FOR DIFFERENT METHODS AVERAGED
OVER 25 TRIALS WITH DIFFERENT ENVIRONMENT INITIAL
CONFIGURATIONS.

eval/info_done_final

Dense_Transformation_random_point_for_eval Dense_Transformation_fixed_point_for_eval

— Dense_transformation_with_learnable_weight — Fixed_point_transformation ~— ToolFlowNet ¥
0.8
0.6 7\A4
0.4
0.2 /\/
_ TN Ste
0 - Py
0 100 200 300 400 50(

Fig. 4. The success rate for Flow-based method and Transformation-based
methods.

the reason why we introduce our last variant LWP-Dense,
which adds a per point weight into the architecture so that
we could learn a weight for each point automatically. During
the test time, if the weight is reliable, we could automatically
choose the coordiante frame center based on the largest weight.
However, since learning the transformation and learning the
weight is a deeply coupled problem. It is very difficult for
the network to learn it concurrently. Due to the limited time,
we haven’t fully tackled the problem of learning weight and
transformation at the same time but we believe this is an
interesting direction to explore in the future.

V. CONCLUSION

We investigated a variety of action representations for
robotic manipulation with point clouds. Our method RP-Dense
predicts dense 6D transformations with dense supervision and
shows that transformation-based action spaces are just as
good as flow-based action spaces if trained with the right
supervision. We compared methods in a water pouring task for
both success rate and quality. This work shows the promise of
dense point cloud networks in robotic manipulation tasks for
future work.

REFERENCES

[11 S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334-1373, 2016.

[2] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours,” in 2016 IEEE international
conference on robotics and automation (ICRA). 1EEE, 2016, pp. 3406—
3413.

[4]

[5]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113, 2019.
T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

L. Wang, Y. Xiang, W. Yang, A. Mousavian, and D. Fox, “Goal-auxiliary
actor-critic for 6d robotic grasping with point clouds,” in Conference on
Robot Learning. PMLR, 2022, pp. 70-80.

K. Takeuchi, I. Yanokura, Y. Kakiuchi, K. Okada, and M. Inaba,
“Automatic hanging point learning from random shape generation and
physical function validation,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2021, pp. 4237—4243.

X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson,
and H. Lee, “Learning 6-dof grasping interaction via deep geometry-
aware 3d representations,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 3766-3773.

D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson, and D. Held,
“Toolflownet: Robotic manipulation with tools via predicting tool flow
from point clouds,” in Conference on Robot Learning. PMLR, 2023,
pp. 1038-1049.

S. Wang, R. Papallas, M. Leouctti, and M. Dogar, “Goal-conditioned
action space reduction for deformable object manipulation,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 3623-3630.

R. Wu, C. Ning, and H. Dong, “Learning foresightful dense vi-
sual affordance for deformable object manipulation,” arXiv preprint
arXiv:2303.11057, 2023.

C. Schenck and D. Fox, “Visual closed-loop control for pouring liquids,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2017, pp. 2629-2636.

C. Matl, Y. Narang, R. Bajcsy, F. Ramos, and D. Fox, “Inferring the
material properties of granular media for robotic tasks,” in 2020 ieee
international conference on robotics and automation (icra). 1EEE,
2020, pp. 2770-2777.

C. Schenck, J. Tompson, S. Levine, and D. Fox, “Learning robotic
manipulation of granular media,” in Conference on Robot Learning.
PMLR, 2017, pp. 239-248.

K. Mo, C. Xia, X. Wang, Y. Deng, X. Gao, and B. Liang, “Foldsformer:
Learning sequential multi-step cloth manipulation with space-time atten-
tion,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 760-767,
2022.

X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 432-448.

